{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "name": "General Simulation Framework", "provenance": [], "collapsed_sections": [], "toc_visible": true }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "markdown", "source": [ "# Creating a discrete-event simulator\n", "\n", "Let's imagine a factory where a certain resource arrives, a certain server processes it and sends it to another station and leaves the factory.\n", "\n", "![discrete-event-model.png]()\n", "\n" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "## Rules\n", "\n", "- Arrivals have a quantity of components and a interarraival time.\n", "\n", "- Stations process the components, one at time.\n", "\n", " - When an input enters to the station, updates the processing time, and adds the element to process.\n", "\n", " - When processing time is completed, extracts the part from the elements to process and start to process another if it is possible.\n", "\n", "- Exit counts the procesed entities." ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "## Creating stations\n", "\n", "Stations are `DiscreteEventModel`s, so you can extend the class and implement the abstract methods to work with them." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "import sys\n", "if sys.version_info >= (3, 8):\n", " from typing import TypedDict\n", "else:\n", " from typing_extensions import TypedDict\n", "\n", "from typing import Dict\n", "\n", "from gsf.core.expressions import Expression\n", "from gsf.core.types import Time\n", "from gsf.dynamic_system.dynamic_systems import DiscreteEventDynamicSystem\n", "from gsf.models.models import DiscreteEventModel\n", "\n", "\n", "class StationState(TypedDict):\n", " \"\"\"State definition of the station\"\"\"\n", " parts: int\n", " remaining_time: Time\n", "\n", "\n", "class Station(DiscreteEventModel):\n", " \"\"\"Station of the simulator\n", "\n", " It process the inputs that receives. Its state has the number of parts that currently are inside the\n", " station and the remaining time to finish to process one of that parts.\n", "\n", " Attributes:\n", " _processing_time(Expression): time to process one part.\n", " \"\"\"\n", " _processing_time: Expression\n", "\n", " def __init__(self, dynamic_system: DiscreteEventDynamicSystem, processing_time: Expression):\n", " \"\"\"\n", " Args:\n", " dynamic_system (DiscreteEventDynamicSystem): factory where stations belongs.\n", " processing_time (Expression): time to process one part.\n", " \"\"\"\n", " super().__init__(dynamic_system, state={\n", " 'parts': 0,\n", " 'remaining_time': -1\n", " })\n", " self._processing_time = processing_time\n", "\n", " def _internal_state_transition_function(self, state: StationState) -> StationState:\n", " \"\"\"Removes one part from processing, and schedules and event to process a new one.\n", " \"\"\"\n", " state[\"parts\"] = max(state[\"parts\"] - 1, 0)\n", " self.schedule(self.get_time())\n", " return state\n", "\n", " def _external_state_transition_function(self, state: StationState, inputs: Dict[str, int],\n", " event_time: Time) -> StationState:\n", " \"\"\"Adds parts to process\n", " \"\"\"\n", " values = inputs.values()\n", " state[\"remaining_time\"] = state[\"remaining_time\"] - event_time\n", " for number_of_parts in values:\n", " if state[\"parts\"] > 0:\n", " state[\"parts\"] = state[\"parts\"] + number_of_parts\n", " elif state[\"parts\"] == 0:\n", " state[\"parts\"] = number_of_parts\n", " self.schedule(self.get_time())\n", " return state\n", "\n", " def _time_advance_function(self, state: StationState) -> Time:\n", " \"\"\"Obtains the time of the next processed entity.\n", " \"\"\"\n", " if state[\"parts\"] < 1:\n", " state[\"remaining_time\"] = Time(-1)\n", " else:\n", " state[\"remaining_time\"] = Time(self._processing_time.evaluate())\n", " return state[\"remaining_time\"]\n", "\n", " def _output_function(self, state: StationState) -> int:\n", " \"\"\"Returns a part.\n", " \"\"\"\n", " if state[\"parts\"] > 0:\n", " return 1\n", " return 0\n", "\n", " def __str__(self):\n", " return self.get_id()" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "Stations process the parts for a `_processing_time`.\n", "\n", "When time ends, an autonomous event is emitted, so the framework runs the `_internal_state_transition_function`, where the station removes one part from processing, and schedules an event to process a new one. When a part comes from another station, the framework runs the `_external_state_transition_function` where the station adds new parts to process.\n", "\n", "The time is `Time(-1)` if there is no parts to process, and evaluates an expression if there are parts. An expression is a datatype of the framework that allows include almost any value.\n", "\n" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "## Creating the generator\n", "\n", "The generator creates parts given an interarrival time, and the number of pieces to create at that arrival." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "from typing import List, Union\n", "\n", "from gsf.core.expressions import Expression\n", "from gsf.core.types import Time\n", "from gsf.dynamic_system.dynamic_systems import DiscreteEventDynamicSystem\n", "from gsf.models.core.base_model import ModelState\n", "from gsf.models.models import DiscreteEventModel\n", "\n", "GeneratorState = Union[Expression, List[int]]\n", "\n", "\n", "class Generator(DiscreteEventModel):\n", " \"\"\"Generator of parts\n", "\n", " Creates parts given an interarrival time, and the number of pieces to create at that arrival\n", "\n", " Attributes:\n", " _interarrival_time (Expression): interarrival time of pieces.\n", " \"\"\"\n", " _interarrival_time: Expression\n", "\n", " def __init__(self, dynamic_system: DiscreteEventDynamicSystem, pieces: GeneratorState,\n", " interarrival_time: Expression):\n", " \"\"\"Args:\n", " dynamic_system(DiscreteEventDynamicSystem): factory where stations belongs.\n", " pieces(GeneratorState): number of pieces to create when there is an arrival.\n", " interarrival_time(Expression): interarrival time of pieces.\n", " \"\"\"\n", " super().__init__(dynamic_system, state=pieces)\n", " self.schedule(Time(0))\n", " self._interarrival_time = interarrival_time\n", "\n", " def _internal_state_transition_function(\n", " self, state: GeneratorState) -> ModelState:\n", " \"\"\"Generates a part\"\"\"\n", " if isinstance(state, list):\n", " state.pop(0)\n", " self.schedule(self.get_time())\n", " return state\n", "\n", " def _time_advance_function(self, state: GeneratorState) -> Time:\n", " \"\"\"Calculates the time of the creation of next part\"\"\"\n", " if isinstance(state, list):\n", " return self._interarrival_time.evaluate() if len(state) > 0 else Time(-1)\n", " else:\n", " return self._interarrival_time.evaluate()\n", "\n", " def _output_function(self, state: GeneratorState):\n", " \"\"\"Get the created part\"\"\"\n", " if isinstance(state, list):\n", " return state[0]\n", " else:\n", " return state.evaluate()\n", "\n", " def __str__(self):\n", " return \"Generator\"\n" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "The generator state could be a list of integers or an expression. If it is a list, the state represent the number of parts per arrival for each arrival, so the `parts[0]` equals to the number of parts at first arrival, `parts[1]` to the second arrival, and so on. On the other hand, if it is an expression, it generates the number of parts that the expression gives during infinite arrivals.\n", "\n", "If the state is a list, the output of an event should be the first element in the list, in turn, if it is a expression, it will evaluate the expression.\n", "\n", "If the parts list is empy, the generator stops of schedule autonomous events.\n", "\n" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "## Creating the exit" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "from typing import Dict\n", "\n", "from gsf.core.types import Time\n", "from gsf.dynamic_system.dynamic_systems import DiscreteEventDynamicSystem\n", "from gsf.models.core.base_model import ModelState\n", "from gsf.models.models import DiscreteEventModel\n", "\n", "\n", "class Exit(DiscreteEventModel):\n", " \"\"\"Exit\n", "\n", " Sink of a factory. Here come all the processed part of the factory.\n", " \"\"\"\n", "\n", " def __init__(self, dynamic_system: DiscreteEventDynamicSystem):\n", " \"\"\"Args:\n", " dynamic_system(DiscreteEventDynamicSystem): factory where stations belongs.\n", " \"\"\"\n", " super().__init__(dynamic_system, state=0)\n", "\n", " def _external_state_transition_function(self, state: int, inputs: Dict[str, int],\n", " event_time: Time) -> int:\n", " \"\"\"Receives the parts\"\"\"\n", " return state + sum(inputs.values())\n", "\n", " def _time_advance_function(self, state: ModelState) -> Time:\n", " \"\"\"Prevents to execute an autonomous event\"\"\"\n", " return Time(-1)\n", "\n", " def _output_function(self, state: ModelState) -> int:\n", " \"\"\"Returns the number of parts processed.\"\"\"\n", " return state\n", "\n", " def __str__(self):\n", " return \"Exit\"" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "## Creating the factory\n", "\n", "Is the dynamic system where all the stations process parts." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "from gsf.core.expressions import Expression\n", "from gsf.dynamic_system.dynamic_systems import DiscreteEventDynamicSystem\n", "\n", "\n", "class FactorySystem(DiscreteEventDynamicSystem):\n", " \"\"\"Factory system\n", "\n", " Is the dynamic system where all the stations process parts.\n", "\n", " Attributes:\n", " generator (Generator): Generator of entities of the factory.\n", " exit (Exit): Sink of the factory,\n", " \"\"\"\n", " generator: Generator\n", " exit: Exit\n", "\n", " def __init__(self, pieces: GeneratorState, interarrival_time: Expression):\n", " \"\"\"Args:\n", " pieces(GeneratorState): number of pieces to create when there is an arrival.\n", " interarrival_time(Expression): interarrival time of pieces.\n", " \"\"\"\n", " super().__init__()\n", " self.generator = Generator(self, pieces, interarrival_time)\n", " self.exit = Exit(self)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "It creates the generator and exit. The stations will have to be defined externally, so is possible to define multiple types of factories." ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "## Running the simulation\n" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "Let's make a simple simulation where one part arrive at time `t=0` and two parts at `t=1`, with processing times of one and two seconds.\n" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "from gsf.experiments.experiment_builders import DiscreteEventExperiment\n", "from gsf.core.mathematics.values import Value\n", "\n", "\n", "factory = FactorySystem([1, 2], Value(1)) # 1 and 2 parts every second\n", "station_1 = Station(factory, Value(1)) # 1 second processing time\n", "station_2 = Station(factory, Value(2)) # 2 seconds processing time\n", "\n", "# build the network\n", "factory.generator.add(station_1) # from generator to station_1\n", "station_1.add(station_2) # from station_1 to station_2\n", "station_2.add(factory.exit) # from station_2 to exit\n", "\n", "experiment = DiscreteEventExperiment(factory)\n", "experiment.simulation_control.start(stop_time=10)\n", "experiment.simulation_control.wait()\n", "\n", "print(factory.exit.get_output())\n", "print(experiment.simulation_report.generate_report())" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "You can see the network usign `factory.show()`" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "factory.show()" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "### Add expressions\n", "\n", "You can use framework's predefined expressions" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "from gsf.core.mathematics.distributions import PoissonDistribution, ExponentialDistribution, TriangularDistribution\n", "from gsf.experiments.experiment_builders import DiscreteEventExperiment\n", "\n", "factory = FactorySystem(PoissonDistribution(5), ExponentialDistribution(0.5))\n", "station_1 = Station(factory, TriangularDistribution(1, 2, 5))\n", "station_2 = Station(factory, TriangularDistribution(1, 4, 5))\n", "factory.generator.add(station_1)\n", "station_1.add(station_2)\n", "station_2.add(factory.exit)\n", "\n", "experiment = DiscreteEventExperiment(factory)\n", "experiment.simulation_control.start(stop_time=15)\n", "experiment.simulation_control.wait()\n", "\n", "print(factory.exit.get_output())\n", "print(experiment.simulation_report.generate_report())" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } } ] }